Tolucy Pty Ltd C/- Calder Flower Architects

Detailed Site Investigation: Proposed Seniors Living, 58 Laitoki Road, Terrey Hills, NSW.

WATER

WASTEWATER

CIVIL

PROJECT MANAGEMENT

P1504710JR05V01 October 2018

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to conduct a Detailed Site Investigation in accordance with the scope of services set out in the contract / quotation between Martens and Associates Pty Ltd and Tolucy Pty Ltd Calder Flower Architects (hereafter known as the Client).

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources which may include for example site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client *etc.* in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

© October 2018 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890

Phone: +61-2-9476-9999

Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

Document and Distribution Status								
Autho	Author(s) Reviewer(s) Project Manager / Director Signature							ature
Robert Mehaffey			Brett McLennan Andrew Norris		Gray Taylor		Wray Tayh.	
			Document Location					
Revision No.	Status	Release Date	File Copy	Calder Flower Architects	Tolucy Pty Ltd			
1	Draft	09/08/2018	1P, 1E	1P	-			
1	Final	10/10/2018	1P, 1E	1P	1P			
Distribution Types: $F = Fax$, $H = Hard copy$, $P = PDF$ document, $F = Other electronic format. Digits indicate number of document$								

copies.

All enquiries regarding this project are to be directed to the Project Manager.

Contents

1 INTRODUCTION	7
1.1 Overview	7
1.2 Objectives	7
1.3 Proposed Development	7
1.4 Scope of Works	7
1.5 Reference Guidelines	8
2 SITE BACKGROUND INFORMATION	9
2.1 Site Location and Existing Land Use	9
3 PREVIOUS SITE INVESTIGATION	10
3.1 Preliminary Site Investigation (PSI)	10
4 CONCEPTUAL SITE MODEL	11
4.1 Areas of Environmental Concern	11
4.2 Sensitive Receptors and Exposure Pathways	11
5 SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)	12
5.1 Data Quality Objectives (DQO)	12
5.2 Data Quality Indicators (DQI)	13
5.3 Investigation and Sampling Methodology and Quality Assurance / Qu Control	ality 15
5.4 Laboratory Analytical Suite	15
6 SITE ASSESSMENT CRITERIA	17
6.1 Overview	17
7 RESULTS	18
7.1 Field Observations	18
7.2 Laboratory Analytical Results	18
8 DISCUSSION AND CONCLUSION	20
8.1 Laboratory Results	20
8.2 Data Gaps	20
8.3 Conclusion	20
9 LIMITATIONS	21
10 REFERENCES	22
11 ATTACHMENT A – SUBDIVISION PLAN	23
12 ATTACHMENT B – AEC PLAN	25
13 ATTACHMENT C – SAMPLING PLAN	27
14 ATTACHMENT D – BOREHOLE LOGS	28
15 ATTACHMENT E – DATA VALIDATION REPORT	36
16 ATTACHMENT F – LABORATORY SUMMARY TABLES	43
17 ATTACHMENT G - LABORATORY ANALYTICAL DOCUMENTATION	53

Abbreviations

- ABC Ambient background concentration
- AEC Area of environmental concern
- AF Asbestos fines

ASC NEPM – Assessment of site contamination (National Environmental Protection Measure)

BTEXN – Benzene, toluene, ethylbenzene, xylene, naphthalene

COC – Chain of custody

- COPC Contaminants of potential concern
- DEC NSW Department of Environment and Conservation
- DP Deposited Plan
- DQI Data quality indicators
- DQO Data quality objective
- DSI Detailed site investigation
- EIL Ecological investigation levels
- EPA NSW Environmental Protection Authority
- ESL Ecological screening levels
- HM Heavy metals
- HSL Health screening level
- LGA Local government area
- MA Martens and Associates Pty Ltd
- mAHD Meters Australian height datum
- mBGL Meters below ground level
- NATA National Association of Testing Authorities
- NBC Northern Beaches Council

- OCP Organochloride pesticides
- OEH NSW Office of Environment and Heritage
- OPP Organophosphate pesticides
- PACM Potential asbestos containing material
- PAH Polycyclic aromatic hydrocarbons
- PSI Preliminary site investigation
- RPD Relative percentage difference difference between two values divided by the average
- SAC Site acceptance criteria
- SAQP Sampling analytical and quality plan
- SOP Standard operating procedure
- TRH Total recoverable hydrocarbons

1 Introduction

1.1 Overview

This report prepared by Martens and Associates (MA) on behalf of Tolucy Pty Ltd C/- Calder Flower Architects ('the client') documents the findings of a detailed site investigation (DSI) to support a development application (DA) to Northern Beaches Council (NBC) for a proposed seniors living development at 58 Laitoki Road, Terrey Hills, NSW ('the site').

A preliminary site investigation (PSI) was previously completed by MA (MA, 2016) for the site and should be read in conjunction with this report.

1.2 Objectives

The objective of this report is to assess areas of environmental concern (AEC) and associated contaminants of potential concern (COPC) identified in the PSI (MA, 2016) and determine suitability for the proposed seniors living development.

1.3 Proposed Development

The proposed seniors living development will include the following:

- Seven residential blocks, including one block with common areas and reception.
- Internal roads, car parking and services infrastructure.

The proposed layout is provided in Attachment A.

1.4 Scope of Works

The scope of works for this DSI includes:

- o Review of PSI (MA, 2016).
- Intrusive soil investigation and soil sampling program where access is available, targeting AEC outlined in the PSI (MA, 2016).
- Laboratory analyses of selected samples for identified COPC and assessment against site acceptance criteria (SAC).

1.5 Reference Guidelines

This assessment is prepared in general accordance with the following guidelines:

- NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure. Referred to as ASC NEPM (2013).
- NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.

2 Site Background Information

2.1 Site Location and Existing Land Use

Site information is summarised in Table 1.

 Table 1: Site background information.

Item	Description / Detail
Site address	58 Laitoki Road, Terrey Hills, NSW.
Lot/DP	Lot 368 DP752017.
Approximate area	1.95 ha (site plan from Calder Flower Architects).
Local Government Area (LGA)	NBC
Current zoning and land use	RU4 Primary Production Small Lots.
Proposed land use	Seniors living development.
Site description	The site contains a single storey clad dwelling, garage, above ground pool, horse arena/stables and sheds.
	The site is generally cleared of trees with low grass cover.
Surrounding land uses	Mixture of rural, rural residential and low density residential.
Drainage	Drainage is typically via overland flow to the north west, to Neverfail Creek (immediately west of the site's western boundary).
Topography	The site has grades of $5 - 15\%$ towards the north west. Site elevation is between approximately 198 mAHD in the south east and 173 mAHD in the north west.
Expected geology	The Sydney 1:100,000 Geological Series Sheet 9130 (Geological Survey of NSW, 1983) indicates that the site is underlain by Hawkesbury Sandstone comprising medium to coarse grained quartz sandstone, very minor shale and laminite lenses.
Environmental receptors	Neverfail Creek to the west of site which is an upper tributary of Kierans Creek.
Sensitive receptors	Future site residents, visitors, and workers. Site workers during future construction work. Surrounding residential/rural site occupants.

3 Previous Site Investigation

3.1 Preliminary Site Investigation (PSI)

A PSI (MA, 2016) was completed which provided an account of potential contamination status at the site. The summary of key findings is provided in Table 2.

Table 2: Summary	of	previous	site	investigations.
------------------	----	----------	------	-----------------

Investigation Details		Investigation Task and Finding
Scope of works	0	Review of available site information including NSW EPA records, Council records and historic aerial photography.
	0	Site walkover.
	0	Identification of AECs and associated COPC.
	0	Preparation of a PSI in general accordance with ASC NEPM (2013).
Current and historical site records key	0	Review of NBC databases included records for the approval of dwellings, a swimming pool, nursery shed, a cabana and landfilling at the site.
findings	0	NSW EPA records contained no notices for the site or site surrounds.
	0	Review of historic aerial photography indicated rural and/or rural residential use since at least 1955.
	0	Site walkover identified dwellings and sheds in the central portion of the site, in addition to stables and a horse arena in the western portion of the site. Localised areas of filling was noted in the western portion of the horse stables and to the east of the horse stables.
Conclusions and recommendations	0	A DSI was recommended to address AEC and associated COPC identified as part of the investigation.

Conceptual Site Model 4

4.1 Areas of Environmental Concern

AECs identified in MA (2016) are provided in Table 3.

Table 3: Areas of environmental concern	n and contaminants of primary concern.
---	--

AEC ¹	Potential for Contamination	COPC
A – Dwelling and existing/former sheds	Pesticides and heavy metals may have been used underneath dwellings for pest control. Dwelling construction may include ACM and/or lead based paints.	HM, TRH, BTEXN, PAH, OCP/OPP, asbestos
	Existing/former sheds may have stored fuel, oils, pesticides and/or been treated with heavy metals and pesticides (pest control). Shed construction may have include ACM and/or lead based paints.	
B – Filled areas ²	Fill, of unknown origin, observed to contain anthropogenic material such as brick and tile. Material may contain contaminants such as ACM, hydrocarbons or pesiticides.	HM, TRH, BTEXN, PAH, OCP/OPP, asbestos

Notes

¹ Locations identified on AEC map in Attachment B.

² An additional area of localised filling was observed in the eastern portion of the site during DSI investigations, as shown in the AEC map in Attachment B.

4.2 **Sensitive Receptors and Exposure Pathways**

Table 4 provides a summary of identified sensitive receptors and potential exposure pathways connecting receptors to identified AECs and COPCs outlined in Table 3.

Table 4: Summary of receptors and potential pathways.

Receptor	Pathway
Human Receptors: • Future site residents, visitors and workers. • Site workers during future construction works. • Surrounding residential/rural site occupants, workers and gold players.	 Dermal contact. Oral ingestion of potentially contaminated soil. Inhalation of potential contaminants.
 <u>Environmental Receptors</u> Neverfail Creek (which is an upper tributary of Kierans Creek). Existing site flora and fauna. 	 Migration of contaminated runoff. Direct contact with site flora and fauna.

Detailed Site Investigation: Proposed Seniors Living, 58 Laitoki Road, Terrey Hills, NSW. P1504710JR05V01 - October 2018 Page 11

5 Sampling, Analytical and Quality Plan (SAQP)

A SAQP was developed to ensure that data collected for this DSI is representative and provides a robust basis for site assessment decisions. Preparation of the SAQP was completed in general accordance with ASC NEPM (2013) methodology and includes:

- Data quality objectives (DQO).
- Sampling methodologies and procedures.
- Field screening methods.
- Sample handling, preservation and storage procedures.
- Analytical QA/QC.

5.1 Data Quality Objectives (DQO)

DQO have been prepared as statements specifying qualitative and quantitative data required to support project decisions. DQO have been prepared in general accordance with NSW EPA (2017) ASC NEPM (2013) guidelines and are presented in Table 5.

 Table 5: Data quality objectives for the assessment of soil investigations.

Step 1 Stating the Problem	The proposed seniors living development will include residential land use with access to soil. Therefore, the site must be deemed suitable to accommodate the proposed land use. This DSI is required to assess risk in AEC posed by COPC, to onsite and offsite sensitive receptors.			
Step 2 Identifying the Decision(s)	 Historical investigations have identified AEC which may be a source of contamination, including existing dwellings and sheds, and potential fill material. To assess the suitability of the site for future residential use, decisions are to be made based on the following questions: Is site soil quality suitable for the intended residential land use? Has previous or current site use impacted the quality of site soil that may pose a risk to humans or the environment health for future land use and construction? Does site soil require remediation or management prior to onsite residential land use? 			
Step 3 Identification of Inputs to the Decision	 The inputs to the assessment of site soil quality will include: Soil sampling at nominated locations across the site. Laboratory analytical results for relevant COPC. Assessment of analytical results against site suitable human health and ecological risk criteria. 			

	Study boundaries are as follows:		
Step 4	 Lateral – Lateral boundary of the assessment is defined by the investigation area boundary as indicated in Attachment B. 		
Study Boundary Definitions	 Vertical – Vertical boundary will be governed by the maximum depth reached during subsurface investigations. 		
Demmons	 Temporal – At this stage of investigation, only one round of sampling has been undertaken. 		
Step 5	The decision rule for this investigation area is as follows:		
Development of Decision Rules	If the concentration of contaminants in the soil data exceeds the adopted assessment criteria; an assessment of the risk is required. Should the risk be unacceptable, further investigation to remediate and or manage the onsite impacts in relation to the proposed development will be undertaken.		
Step 6 Specification of Limits on Decision Errors	Guidance found in ASC NEPM (2013) Schedule B2 regarding 95% upper confidence limit (UCL) states that the 95% UCL of the arithmetic mean provides a 95% confidence level that the true population mean will be less than or equal to this value. Therefore, a decision can be made based on a probability that 95% of the data collected will satisfy the site acceptance criteria. A limit on decision error will be 5% that a conclusive statement may be incorrect. In applying the statistical analysis, the standard deviation of the results should be less than 50% of the relevant investigation or screening level, and no single value should exceed 250% of the relevant investigation or screening level. Additionally, data validation will be completed with laboratory QA/QC analysis, as detailed in Section 5.2.		
Step 7 Optimisation of Sampling Design	Proposed sampling locations shall provide even coverage across identified AEC on the site (with consideration to the existing development and access constraints). Sampling shall attempt to ensure that critical locations are assessed, sampled, and analysed for appropriate contaminants of concern. Soil sampling locations were set using a combined judgemental and grid pattern across the site.		

5.2 Data Quality Indicators (DQI)

In accordance with NSW EPA (2017), the investigation data set has been compared with Data Quality Indicators (DQI) outlined in Table 6 to ensure that collected data meets the project needs and that DQOs have been meet.

 Table 6: Data Quality Indicators.

Assessment Measure (DQI)	Comment
Precision – A measure of the variability (or reproducibility) of data.	Precision is assessed by reviewing blind field duplicated sample set through the calculation of relative percent difference (RPD). Data precision is deemed acceptable where contaminant concentrations are less than 10 x EQL, or where RPDs are below 50% (10-30 x EQL) or 30% (>30 x EQL). Exceedance of this range is still considered acceptable where heterogeneous materials are sampled and where results are significantly lower than SAC.
Accuracy – A measure of the closeness of reported data to the "true value".	 Data accuracy is assessed by: Field spikes and blanks. Laboratory control samples.

Detailed Site Investigation: Proposed Seniors Living, 58 Laitoki Road, Terrey Hills, NSW. P1504710JR05V01 – October 2018

Assessment Measure (DQI)	Comment
Representativeness – The confidence that data are representative of each media	To ensure data representativeness the following field and laboratory procedures are followed:
present on the site.	 Ensure that the design and implementation of the sampling program has been completed in accordance with MA standard operating procedures (SOP).
	 Blank samples shall be used during field sampling to ensure no cross contamination or laboratory artefacts.
	 Ensure that all laboratory hold times are met and that sample handling and transport is completed in accordance with MA SOP.
Completeness – A measure of the amount of usable data from a data collection	To ensure data set completeness, the following is required:
activity.	 Confirmation that all sampling methodology was completed in general accordance with MA SOP.
	 COC and receipt forms.
	 Results from all laboratory QA/QC samples (lab blanks, trip/spike, lab duplicates).
	 NATA accreditation stamp on all laboratory reports.
Comparability - The confidence that data	Data comparability is maintained by ensuring that:
may be considered to be equivalent for each sampling and analytical event.	 All site sampling events are undertaken following methodologies outlined in MA SOP and published guidelines.
	 NATA accredited laboratory methodologies shall be followed on all laboratory testing.

5.3 Investigation and Sampling Methodology and Quality Assurance / Quality Control

Site investigation and soil sampling methodology (Table 7) was completed to meet the project DQO.

Table :	7:	Investigation	and	samplina	methodoloav.
I GIOIC	••	mganon	and	Janping	momodology.

Activity	Defail / Comments
Fieldworks	Surface and subsurface investigations were completed on 12 July, 2018 and involved:
	 Excavation of 2 boreholes in AECs and collection of 3 representative soil samples for laboratory analysis. Collection of 9 near-surface soil samples across the site for laboratory analysis. Collection of 2 fibrous compart chaptering fragment material samples
	 Collection of 2 horos cemens sheering hagmen material samples for laboratory analysis. Collection of QA/QC samples for laboratory analysis.
	Borehole and sampling locations are provided in Attachment C, and detailed borehole logs provided in Attachment D.
Soil sampling	Soil sampling was completed by the supervising MA environmental engineer using a clean spade (surface samples), or directly from the lead auger (borehole samples) using a nitrile glove covered hand.
	Each sample was placed into a laboratory-supplied, acid-rinsed 250mL glass jar, labelled with a unique identification number and no headspace to limit volatile loss. A clean pair of disposable gloves was used when handling each sample and samples collected from the centre of soil clods.
QA / QC sampling	Duplicate samples were collected for intra-laboratory analysis. 2 soil duplicate (intra-lab) samples were collected during investigations. A trip blank and trip spike sample was used during sampling.
Sample handling and	Sample collection, storage and transport were conducted according to MA SOP.
transportation	Collected samples were placed immediately into an ice chilled cooler-box. Samples were dispatched to a NATA-accredited laboratory under chain of
	cosiody docorrientation within holding littles.

A review of QA/QC procedure has been completed and is presented in the data validation report (Attachment E). The report concludes that data is suitable for the purposes of the assessment.

5.4 Laboratory Analytical Suite

Laboratory analysis was carried out by Envirolab Pty Ltd a NATA accredited laboratory. Laboratory analysis is summarised in Table 8.

Table 8: Summary of primary soil laboratory analyses.

COPC	Number of Samples Analysed
BTEXN	12
TRH	12
РАН	12
Asbestos in soil	2
РСВ	2
Heavy metals ¹	12
OCP/OPP	12

<u>Notes:</u> ¹ Heavy metals – arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc.

6 Site Assessment Criteria

6.1 Overview

The SAC adopted for this DSI have been derived from ASC NEPM (2013).

Guideline values for individual contaminants analysed for this assessment are presented in laboratory tables in Attachment F.

Table 9 summarises the SAC adopted for this investigation.

Table 9: Summary of SAC.

Media	Adopted Guidelines	Applicability
Soil	ASC NEPM (2013)	Health Investigation Levels (HILs)
	HILs, EILs, ESLs,	HIL A – residential land use with access to soil
	HSLs and	Ecological Investigation Levels (EILs)
	Management Limits	ELs have been developed for urban residential and public open space land use. Site specific ELs were calculated using conservative physiochemical properties (pH of 4 and CEC of 5 cmol/kg) and ambient background concentrations (ABC) for aged contamination in low traffic areas in NSW.
		Environmental Screening Levels (ESLs)
		Urban residential and public open spaces
		Health Screening Levels (HSLs)
		HSL A – Low density residential land use for sand have been adopted as a conservative measure.
		Management Limits
		TRH management levels for residential, parkland and public open space have been adopted based on the proposed future land use.
		Asbestos
		Due to the preliminary nature of the investigation, asbestos will be assessed on a detect/non-detect basis.

7 Results

7.1 Field Observations

DSI field investigations were undertaken on 12 July, 2018, in conjunction with a geotechnical investigation at the site. The following observations were made:

- The timber clad dwelling and galvanised metal sheds in the central portion of the site typically in good condition.
- Site vegetation was typically in good condition, with no obvious impacts from contamination.
- Fill material in the western portion of the site, adjacent to the horse stables and trotting track, was observed to be primarily comprised of sands and clayey sands (likely reworked material from site) containing anthropogenic material such as plastic, concrete, tile and brick fragments.
- An additional area of fill was noted in the eastern portion of the site, east of the existing dwelling and sheds. Fill was observed to contain potentially asbestos containing material (PACM).

7.2 Laboratory Analytical Results

The following sections summarise the results of laboratory analysis. Detailed tabulated results showing individual sample concentrations compared to adopted SAC are available in Attachment F. Laboratory analytical documentation is available in Attachment G.

Analyte	Results Compared to SAC
Heavy Metals	HLs
	All results below SAC.
	Ells
	All results below SAC.

 Table 10: Summary of laboratory results.

Analyte	Results Compared to SAC
TRH/BTEXN	HILs All results below SAC. ELs All results below SAC. ESLs All results below SAC. HSLs All results below SAC. Management Limits All results below SAC.
OCP/OPP	HILs All results below SAC. EILs All results below SAC.
РАН	HILs All results below SAC. EILs All results below SAC. ESLs All results below SAC. HSLs All results below SAC.
РСВ	All results below laboratory detection limits.
Asbestos	Asbestos in soil Crysotile asbestos detected in soil sample 4710/BH101/0.5 . Asbestos in material Crysotile asbestos detected in material samples 4710/PACM01 and 4710/PACM02 .

8 Discussion and Conclusion

8.1 Laboratory Results

Laboratory results (Envirolab report reference 190859) found all chemical concentrations for soil samples to be below the adopted SAC.

Asbestos was identified in one soil sample (4710/BH101/0.5) and two material samples (4710/PACM01 and 4710/PACM02), collected from the area of localised fill material identified in the eastern portion of the site (sampling locations provided on Attachment C).

8.2 Data Gaps

Due to access restrictions at the time of inspection, sampling beneath existing dwellings, sheds and stables on the site (i.e. AEC A) was not undertaken. We recommend that, following demolition of existing structures, sampling is undertaken in building footprints to address data gaps (this may be done during the remediation stage).

8.3 Conclusion

Asbestos identified in the eastern portion of the site poses a potential risk to current and future human receptors. We recommend a remedial action plan (RAP) be prepared to address areas of identified asbestos contamination, as shown in Attachment C and to guide remediation of the areas.

Additionally, due to access restrictions, data gaps exist in AEC A. It is recommended that, following demolition of structures, data gap closure sampling is undertaken to determine if remediation is required. This may be completed in conjunction with site remediation works.

If soil is to be removed from site, a formal waste classification assessment may be required in accordance with NSW EPA Waste Classification Guidelines (2014).

Subject to the preparation and completion of a RAP and data gap assessment at the site, we consider the site can be made suitable for the proposed seniors living development. Should the proposed development be modified, then reassessment will be required.

9 Limitations

This DSI was undertaken in accordance with current industry standards.

It is important to note that no land contamination study can be considered to be a complete and exhaustive characterisation of a site nor can it be guaranteed that any assessment shall identify and characterise all areas of potential contamination or all past potentially contaminating land-uses. Therefore, this report should not be read as a guarantee that only contamination identified shall be found on the site. Should material be exposed in future which appears to be contaminated, additional testing may be required to determine the implications for the site.

Martens & Associates Pty Ltd has undertaken this assessment for the purposes of assessing potential site contamination. No reliance on this report should be made for any other investigation or proposal. Martens & Associates Pty Ltd accepts no responsibility, and provides no guarantee regarding the characteristics of areas of the site not specifically studied in this investigation.

10 References

- Martens and Associates (2018) Preliminary Site Investigation: Proposed Seniors Living, 58 Laitoki Road, Terrey Hills, NSW – ref. P1504710JR02V02.
- NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure – Referred to as ASC NEPM (2013).
- NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW EPA (1995) Sampling Design Guidelines.
- NSW EPA (2014) Waste Classification Guidelines, Part 1: Classifying Waste.
- NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.

11 Attachment A – Subdivision Plan

Detailed Site Investigation: Proposed Seniors Living, 58 Laitoki Road, Terrey Hills, NSW. P1504710JR05V01 – October 2018 Page 23

SITE PLAN 1:400

CLIENT: Tolucy Pty Limited

COOYONG ROAD

	1	1	1	1
9/10/18	Issue for Development Application	A	PJ	DM
DATE	ISSUE	Issue ID	Drawn	Check

NOTES:

Do not scale from this drawing. Use figured dimensions only.
Contact the Calder Flower Architects for clarifications if required.
Calder Flower Architects are not liable for any loss, damage,

claim, cost demand as a result of the use or receipt of drawings issued in DWG format. - Refer to Landscape Documentation for external works and all tree retention and removal information.

NOT FOR CONSTRUCTION

PROJECT:

TERREY HILLS PROPOSED SENIORS COMMUNITY 58 LAITOKI ROAD TERREY HILLS, NSW 2084

DRAWING TITLE: SITE PLAN

12 Attachment B – AEC Plan

Detailed Site Investigation: Proposed Seniors Living, 58 Laitoki Road, Terrey Hills, NSW. P1504710JR05V01 – October 2018 Page 25

Horse arend -martens-Horse shade shelters Fill up to 1 m deep Stockpile (soil, aggregate, builder's rubble) approximately 4 m diameter by 0.5 m deep Fill observed during DSI Indicative site boundary AEC A – Existing/former sheds and dwelling AEC B – Approximate areas of fill Environment | Water | Wastewater | Geotechnical | Civil | Management

Drawing No:

FIGURE 1

AEC Locations 52 Cooyong Road, Terrey Hills, NSW SOURCE: SIX Maps

Job No: P1504710JR05V01

02/08/2018

Not to Scale

Martens & Associates Pty Ltd ABN 85 070 240 890 BR/RM GT Approved:

Key:

Drawn:

Date:

Scale:

13 Attachment C – Sampling Plan

4

KEY

APPROXIMATE SITE BOUNDARY

INDICATIVE BOREHOLE LOCATION

INDICATIVE MATERIAL SAMPLE LOCATION

	DECEDIDITION	DATE					SCALE.		DATUM			1
REV	DESCRIPTION	DATE	DRAWN	I DESIGNEL		РРКУЛ	SLALE	ם אט	DATUM	PRUJELI MANAGER		
A	INITIAL RELEASE	10/10/2018	LZ	RM	BM	BM	<u> </u>	MCA		DM		
							A1 (A3) 1:500 (1:1,000) METRES	ADM				
								DISCLAIMER	& COPYRIGHT	1	PROJECT NAME/PLANSET TITLE	
								This plan must no	ot be used for constru	ction unless signed as approved by		Linaito
									y autriority.	+ h	ENGINEERING SERVICES	& Associates
									s in millimetres unless	s otnerwise specified.	DETAILED SITE INVESTIGATION	
								I his drawing mus	st not be reproduced i ns & Associates Ptv I	n whole or part without prior written		
					+ +			(C) Converight	Martana ⁰ Acces	viatas Dtultal	52 COOYONG ROAD, TERREY HILLS	Suite 201, 20 George St, Hornsby, NSW 20
								(C) Copyright	Martens & Assoc	clates Pty Ltd		Email: mail@martens.c
A1 / A3 L	ANDSCAPE (A1LC v02.0.01)											

e St, Hornsby, NSW 2077 Australia Phone: (02) 9476 999 Email: mail@martens.com.au Internet: www.martens.com

	1			8	٨	
				-		
						A
						В
	No.					
						С
2 CM102 103						
BH101		VI ROAD				
A		LAITO				D
		nec	Imap			
		current: cl	sar i change			E
g Engineers ent	DRAWING TITLE	DSI	SAMPLING PL	AN		F
ical 9999 Fax: (02) 9476 8767	PROJECT NO. P1504710	PLANSET NO.	RELEASE NO. R01	DRAWING NO.	REVISION	
om.au	DRAWING ID: P1504710-PS02-R01-JZ0		20 36 4		80 90 100	

14 Attachment D – Borehole Logs

Detailed Site Investigation: Proposed Seniors Living, 58 Laitoki Road, Terrey Hills, NSW. P1504710JR05V01 – October 2018 Page 28

CLII	ENT	٦	Fony Ha	arris c/- (Calder Flower Architec	ts			COMMENCED	12/07/2018	COMPLETED	12/07/20	018		REF	BH101
PROJECT Preliminary Geotechnical Assessment									LOGGED	АМ	CHECKED	HN			o	
SIT	E	5	52 Cooy	ong Rd	, Terrey Hills, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A			Sheet PROJECT	1 OF 1 NO. P1504710
EQU	IIPME	NT			2WD ute-mounted hydrau	ulic dı	rill rig		EASTING		RL SURFACE	193.4 m			DATUM	AHD
EXC	AVAT	ION	DIMENS	IONS	Ø100 mm x 6.70 m depth				NORTHING		ASPECT	Northwe	st		SLOPE	5-10%
		Dri	lling		Sampling	_				Fi	eld Material D	escripti	on			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	MOISTURE			STRUCTURE AND ADDITIONAL OBSERVATIONS			
				193.40			\bigotimes	ML	FILL: Sandy SILT; lo gravels and fibrous	w plasticity; brown; with r cement sheeting fragmer	nixed subangular its.	r		FILL		
	м		-	0.40 193.00 0.80 192.60	4710/BH101/0.5/S/1 D 0.50 m				Brown, grey, trace o	lay.			F - Si	t TOPSOII		
AD/V	 М		1	<u>1.00</u> 192.40	4710/BH101/1.0/S/1 D 1.00 m	/BH101/1.0/S/1 D						nd, (< <p< td=""><td>L)VSt</td><td>RESIDU</td><td>AL SOIL</td><td></td></p<>	L)VSt	RESIDU	AL SOIL	
	м-н 		2-	-	4710/BH101/1.7/S/1 D 1.70 m		x x x						н			
	н		- -	<u>2.50</u> 190.90	-		> >		SANDSTONE; fine tweathered; inferred	o medium grained; red, g very low to low strength.	rey; distinctly			WEATHE 2.50: V-b	ERED ROO	<u>ск</u> — — — — — — — — — — — — — — — — — — —
		ncountered	3-	-												
		Not Encour	4	<i>4.00</i> 189.40	-				Pale grey.							
AD/T	м		<u> </u>	<u>4.60</u> 188.80	4710/BH101/4.8/R/1 D 4.80 m		F	Pale brown, grey.								
				<u>5.30</u> 188.10	_				Pale grey.							
			6-	187.70	4710/BH101/6.0/R/1 6.00 m				Pale grey, white.							
			- - -	6.70					Hole Terminated at	6.70 m				6.70: TC- medium	-bit refusal strength sa	on inferred low to andstone.
			7	-												
			I		EXCAVATION LOG TO) BE	REA	.D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT) ABB		ONS	
(n		art	en	S s Ptv. Ltd.			Suit mail@	MARTENS & 7 e 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter	Australia 767 ns.com.au		En	gine BOI	erin REH	g Log - OLE

CLIENT Tony Harris c/- Calder Flower Architects									COMMENCED	12/07/2018	COMPLETED	12/07/2	018		REF	BH102	
PROJECT Preliminary Geotechnical Assessment									LOGGED	АМ	CHECKED	HN			Shoot	1 05 1	
SITE	Ξ	5	52 Cooy	ong Rd	, Terrey Hills, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A			PROJECT	NO. P1504710	
EQU	IIPME	NT			2WD ute-mounted hydrau	ulic d	Irill rig		EASTING		RL SURFACE	174.3 n	ı		DATUM	AHD	
EXC	AVAT		DIMENS	IONS	Ø100 mm x 6.20 m depth				NORTHING		ASPECT	Northw	est	;	SLOPE	<2%	
METHOD	PENETRATION RESISTANCE	D ri	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	Fi	eld Material D		CONDITION CONSISTENCY DENSITY		STRUCTURE AND ADDITIONAL OBSERVATIONS		
AD/V	н		-	0.10 174.20	4710/BH102/0.3/S/1 D 0.30 m 4710/BH102/0 8/S/1 D			SP SC	FILL: SAND; fine to subangular gravels. FILL: Clayey SAND orange-brown, grey plastic fragments.	coarse grained, grey, pal fine to medium grained; with mixed subangular g	e brown; with mix	ed and	D	FILL			
AD/T	м		1	173.40	0.80 m 4710/BH102/1.1/R/1 D 1.10 m		X		FILL: SANDSTONE grey, white.	BOULDER; fine to coarse	e grained, grey, p		<u> </u>	0.90: V-b within fill.	oit refusal c	n sandstone boulder	
	L 		-	1.90	4710/BH102/1.4/S/1 D 1.40 m		\bigotimes	> ^{CL} > >	FILL: SIITY Sandy Cl	Ar; Iow plasticity; brown,	uarк grey, white.	M (< <f< td=""><td>SL) VSt</td><td></td><td></td><td></td></f<>	SL) VSt				
		12/07/18	2-	172.40	4710/BH102/2.1/S/1 D 2.10 m			SC	Clayey SAND, fine t	o medium grained, yellow	 brown.	D /	D - VD	RESIDU	AL SOIL		
AD/V	L-M	¥	-	2.50 171.80	4710/BH102/2.6/S/1 D 2.60 m		-		Pale grey, red-brow	n, dark green-grey.							
			3	171.30	4710/BH102/3.1/S/1 D 3.10 m				Pale grey, pale brow	vn.		M					
	т Т		- 4 —	3.60 170.70	-				SANDSTONE; fine weathered; inferred	to medium grained, pale of very low to low strength.	WEATHERED ROCK 3.60: V-bit refusal.						
			4-	4	4	_				Pale brown, pale gr	∋y.						
AD/T	M 	\triangleright	- 5—	-													
	н		-	-													
			6-	6.20													
			7	-					Hole Terminated at	6.20 m				6.20: TC- medium s	-bit refusal	on inferred low to andstone.	
				<u> </u>	 EXCAVATION LOG TO	 	E REA			TH ACCOMPANYING	REPORT NOT	ES ANI) ABB	REVIATI	ONS		
(0) Copyr	art ight Martens	en s & Associate	S 9 Ply. Ltd.			Sui mail	MARTENS & te 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter	Australia 767 ns.com.au		En	gine BOł	erin REH	g Log - OLE	

CL	CLIENT Tony Harris c/- Calder Flower Architects									18/07/2018	COMPLETED	18/07/20	BH103			
PR	OJEC	ст	Prelimina	ary Geo	technical Assessment				LOGGED	АМ	CHECKED	HN				
SIT	ΓE		52 Cooy	ong Rd	, Terrey Hills, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	Grass			Sheet PROJECT	1 OF 1 NO. P1504710
EQ	UIPME	ENT			2WD ute-mounted hydra	ulic c	drill rig		EASTING		RL SURFACE	183.2 m			DATUM	AHD
EX	CAVAT	ΓION	DIMENSI	ONS	Ø100 mm x 4.00 m deptr	ı			NORTHING		ASPECT	West			SLOPE	10-15%
	-	Dr	illing	1	Sampling	-		-		F	ield Material D	escriptio	on	1		
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	RIPTION	MOISTURE	CONSISTENCY DENSITY		STRUCTURE AND ADDITIONAL OBSERVATIONS	
			-	183.20 0.20 183.00	-			SC CL	TOPSOIL: Clayey S ironstone gravels. Sandy CLAY; low pl	AND; fine grained; brown	; with subrounder I-brown.	d D	MD	RESIDU	JAL SOIL	
AD/V	L		- - 1	0.70 182.50 0.90 1.00 182.20 1.20 182.00	4710/BH103/0.5/S/1 D 0.50 m 4710/BH103/1.3/R/1 D 1.30 m				Grey, red-brown. Grey. SANDSTONE; fine distinctly weathered Pale orange-brown.	to medium grained; yellov ; inferred low strength.	v-brown, dark red	M (<pl< td=""><td>St VSt</td><td>WEATH 1.00: V-</td><td>IERED ROC</td><td></td></pl<>	St VSt	WEATH 1.00: V-	IERED ROC	
		Encountered	2	<u>1.80</u> 181.40	_				White, pale grey.							-
AD/T	н	Not	-	<u>2.20</u> 181.00					Orange-brown.							-
016-11-13			3	3.30												-
3 Prj: Martens 2.00 2			-	179.90 <u>3.70</u> 179.50	-				Grey, brown.							
.00 2016-11-1	-		4	4.00			· · · · ·		Hole Terminated at	4.00 m				4.00: T(C-bit refusal	on inferred low to
Lib: Martens 2			-	-										medium	i su engui se	-
Tool - DGD			-													-
ab and In Situ			5 —													-
004 Datgel L			-													-
(2018 15:29 8.30)			-													-
DrawingFile>> 09/08/			6													-
1102V01.GPJ <<			-													-
504710BH101-Bh			7													-
S BOREHOLE P1.			-													-
MARTEN																-
MARTENS 2.00 LIB.GLB Log	r	D) Copy		en & Associate	EXCAVATION LOG T S 19 Ply. Ltd.) B	E REA	.D IN Su mai	MARTENS & . MARTENS & . ite 201, 20 George S Phone: (02) 9476 I@martens.com.au	TH ACCOMPANYING ASSOCIATES PTY LTC St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marteu	REPORT NOT Australia 767 ns.com.au	ES AND	ABB En	gin BO	eerin REH	g Log - OLE

CL	CLIENT Tony Harris c/- Calder Flower Architects							COMMENCED	COMMENCED 18/07/2018 COMPLETED 1					REF	BH104					
PR	OJEC	т і	Prelimina	ary Geo	technical Assessment	t			LOGGED AM CHECKED			HN			Ohaad					
SIT	ΓE	!	52 Cooy	ong Rd	, Terrey Hills, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	Grass			PROJECT	1 OF 1 NO. P1504710				
EQ	UIPME	INT			2WD ute-mounted hydra	ulic c	Irill rig		EASTING		RL SURFACE	179.5	179.5 m DATUM AHD							
EX	CAVAT	AVATION DIMENSIONS Ø100 mm x 4.30 m depth							NORTHING		ASPECT	West	West SLOPE 5-10%							
	_	Drilling Sampling z								Fi	eld Material D	escrip	iption							
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATIC	SOIL/ROCK MATERIAL DESCRIPTION			MOISTURE	CONDITION	DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS					
	L-M		-	179.50 <u>0.20</u> 179.30	-		X	SC CL	FILL: Clayey SAND; subrounded ironstor FILL: Sandy CLAY; yellow-brown; trace	SAND; fine to medium grained; brown; with onstone and sandstone gravels.						-				
	L		-	0.80	4710/BH104/0.5/S/1 D 0.50 m		\bigotimes			-		(<	A an PL) an VS	id St		-				
AD/V			1	178.70 <u>1.00</u> 178.50	4710/BH104/0.8/S/1 D 0.80 m			SM CL	FILL: Silty SAND; fir mixed gravels and c Sandy CLAY; low pl	le to medium grained; bla ilayasticity; brown; trace subr	ck; with subround		и мі F		RESIDUAL SOIL					
	L-M		-	-	4710/BH104/1.2/S/1 D 1.20 m				subangular quartz g	ravels.		 (<	M PL) St VS	 St		-				
	H-	ountered	2-	1.80 177.70					SANDSTONE; fine t weathered; inferred	o medium grained; orang very low to low strength.	e-brown; distinct	y		WEATI 1.80: V	HERED ROO -bit refusal.	ск — — — — — — — — — — — — — — — — — — —				
	М-Н	Not Enc	-	2.30 177.20	_				White, pale grey, pa	le red.						-				
			-				· · · · · · · · · · · · · · · · · · ·									-				
2016-11-13 AD/T			3	3.00 176.50 <u>3.30</u>	-				Inferred low strength.							-				
Prj: Martens 2.00	н		-	170.20			· · · · · · · · · · · · · · · · · · ·		Pale orange-brown,	pale grey.						-				
IS 2:00 2016-11-13			4-1	<u>4.00</u> 175.50					Pale red, pale grey.							-				
Lib: Marter			-	4.30					Hole Terminated at	4.30 m				4.30: T mediur	C-bit refusal n strength sa	on inferred low to				
šitu Tool - DGD			-	-												-				
Lab and In S			5													-				
30.004 Datgel			-	-												-				
08/2018 15:29 8			-	-												-				
vingFile>> 09/(6-																	
V01.GPJ < <drav< td=""><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drav<>			-	-												-				
BH101-BH102			7-													-				
DLE P1504710			-	-												-				
RTENS BOREH(-	-												-				
Log MA		I	I		EXCAVATION LOG TO		E REA	D IN C	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AN	ID AB	BREVIA	TIONS					
MARTENS 2.00 LIB.GLB	r	Copy	art right Martens	en & Associate	S s Pty. Ltd.			Suit mail(MARTENS & A e 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter	Australia 767 ns.com.au		Eı	ngin BO	eerin REH	g Log - OLE				

CLIENT Tony Harris c/- Calder Flower Architects							ts			COMMENCED	COMMENCED 18/07/2018 COMPLETED					REF	BH105
PF	ROJE	OJECT Preliminary Geotechnical Assessment								LOGGED	АМ	CHECKED	HN			Ohaat	
Sľ	TE	52 Cooyong Rd, Terrey Hills, NSW								GEOLOGY	Hawkesbury Sandstone	VEGETATION	Grass			PROJECT	1 OF 1 NO. P1504710
EC	QUIPN	PMENT 2WD ute-mounted hydraulic drill rig								EASTING	EASTING RL SURFACE 174.1 m						AHD
EX	XCAVATION DIMENSIONS Ø100 mm x 4.50 m depth									NORTHING		ASPECT	West			SLOPE	<2%
_	Drilling Sampling								z		Fi	eld Material D	escriptio	on L			
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPT RL	н	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATIO	SOIL/RC	OCK MATERIAL DESC	RIPTION	MOISTURE	CONSISTENCY DENSITY	511	STRUCTURE AND ADDITIONAL OBSERVATIONS	
_				0.15 - 173.9	5			X	SM SC	FILL: Silty SAND; fir mixed subangular g FILL: Clayey SAND; orange-brown, grey	te to coarse grained; grey ravels, trace clay; inferrec fine to medium grained; with mixed subangular to	v, dark brown; with d dense. dark brown, o subrounded	h /		FILL		-
AD/	M			_				\bigotimes		gravels, concrete ar	nd plastic fragments; infer	red dense.	D	D			
	+ -	_	1 -	<u>1.00</u> 173.1	0			X	CL	FILL: Sandy CLAY; very stiff.	 low plasticity; brown, dark	grey; inferred sti	iff to M				-
				- <u>1.60</u> 172.5	0			X	SC	Clavev SAND: medi			(< <pl< td=""><td>)VSt</td><td>RESIDI</td><td></td><td></td></pl<>)VSt	RESIDI		
~	I -N	,	2-	-						dense.	layey SAND; medium grained; yellow brown; inferred medium ense.			n			-
AL				<u>2.30</u> 171.8	0				Pale grey, red-brow					-			
			3-3.00	,								M / W				-	
2.00 2016-11-13				171.1 3.20 170.9	0					Pale grey, pale brov SANDSTONE; med weathered; inferred	Pale grey, pale brown. SANDSTONE; medium grained; pale grey, white; distinctly weathered; inferred very low to low strength.				WEATHERED ROCK		
-13 Prj: Martens 2)/T		4	-	_													-
ens 2.00 2016-11- AC	IVI-F		- 4	<u>4.20</u>	0					Pale brown, pale ar	21/						-
Lib: Mart				4.50				· · · · · · · · · ·		raie brown, paie gr	.				1.50 7	0.1.11	
ol - DGD				-						Hole Terminated at	4.50 m				4.50: To medium	C-bit refusal n strength sa	on inferred low to indstone.
In Situ To			5-														
I Lab and				_													
04 Datge				-													
29 8.30.0				-													-
3/2018 15				-													-
30/60 <<6			6-														-
rawingFile																	
GPJ < <c< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c<>				-													
H102V01.				-													-
BH101-BF			7 -	-													-
91504710				-													
REHOLE F																	
RTENS BO				-													
Log MAF					E	XCAVATION LOG T) D BI	E REA	D IN (CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	 ABB	 REVIAT	IONS	
MARTENS 2.00 LIB.GLB		(C) Cop	art Dyright Marter	E EN ns & Associa	ates	S Pty. Ltd.			Su mail	MARTENS & J ite 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fax: (02) 9476 87 WEB: http://www.marter	Australia 767 ns.com.au		En	gin BO	eerin REH	g Log - OLE

CLIENT Tony Harris c/- Calder Flower Architects								COMMENCED	COMMENCED 18/07/2018 COMPLETED					R	EF	BH106				
PF	ROJE	ст	Prelimina	ary Geo	technical Assessment				LOGGED	АМ	CHECKED	HN			Oha	- 4				
Sľ	ΓE		52 Cooy	ong Rd	, Terrey Hills, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	Grass PF				et DJECT	1 OF 1 NO. P1504710			
EC	UIPM	PMENT 2WD ute-mounted hydraulic drill rig									RL SURFACE	177.5	m		DAT	UМ	AHD			
EX	CAVATION DIMENSIONS Ø100 mm x 2.10 m depth								NORTHING		ASPECT	West			SLC	PE	<5%			
		Dr	illing	1	Sampling			7		Fi	eld Material D	escrip	iption							
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATIO	SOIL/RC	OCK MATERIAL DESC	RIPTION	MOISTURE	CONDITION	DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS					
			-	177.50 0.20	4710/BH106/0.1/S/1 D	_	\bigotimes	SP	FILL: SAND; mediu	m grained; grey, brown.		'	<u> </u>	Fil	L		-			
	L-M		-	0.60	4710/BH106/0.5/S/1 D		\bigotimes	SC	FILL: Clayey SAND; orange-brown, red; gravels.	; fine to medium grained; with subrounded to subar 	black, grey, ngular ironstone		N N	L - MD			-			
		countered	-	176.90	0.50 m		\bigotimes	CL	FILL: Sandy CLAY, subrounded sandsto	low plasticity; dark grey, d one boulders and brick fra	lark brown; with agments.	 >)	И 5 РL) \	St - /St			-			
ADA		ot En		1.10 176.40	4710/BH106/1.0/S/1 D 1.00 m		\times	SP					+	R						
		z	-	1.40	4710/BH106/1.3/S/1 D												-			
	м							SC	Clayey SAND; medi	SAND; medium grained; orange brown							-			
	-	+	-	2.10			<u></u>		Hole Terminated at	2.10 m				2.1	10: V-bit ret	fusal o	n inferred very low to			
XTENS BOREHOLE P1504710BH101-BH102V01.GPJ < <drawingfile>> 09/08/2018 1529 8.30.004 Darget Lab and In Silu Tool - DCD Lib: Martens 2.00.2016-11-13 Prj: Martens 2.00.2016-11-13</drawingfile>															v strength s	sandstr	one. 			
TER Log M		1			EXCAVATION LOG TO) BE	REA	D IN C	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AN	ID A	BBRE	VIATIONS	3				
MARTENS 2.00 LIB.G		C) Copy	art right Martens	en & Associate	S is Pty. Ltd.			Suit mail(MARTENS & 7 te 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fax: (02) 9476 87 WEB: http://www.marter	Australia 767 ns.com.au		E	ing B	inee SORE	rin EH	g Log - OLE			

CL	IENT	٦	Fony Ha	ris c/- C	Calder Flower Architec	ts			COMMENCED	COMPLETED 18/07/2018 COMPLETED 18/07/2018				3	REF	BH107
PR	ROJECT Preliminary Geotechnical Assessment								LOGGED	АМ	CHECKED	HN				
SIT	TE 52 Cooyong Rd, Terrey Hills, NSW								GEOLOGY	Hawkesbury Sandstone	VEGETATION	Grass			PROJEC	1 OF 1 T NO. P1504710
EQ	UIPME	IPMENT 2WD ute-mounted hydraulic drill rig F							EASTING		RL SURFACE	186 m			DATUM	AHD
EX	EXCAVATION DIMENSIONS Ø100 mm x 1.50 m depth N								NORTHING		ASPECT	West			SLOPE	<5%
	Drilling Sampling									Fi	ield Material D	escrip	tion			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	DENSITY	STR AI OBS	STRUCTURE AND ADDITIONAL OBSERVATIONS			
				<u>0.10</u> 185.90					OPSOIL: Sandy SI Sandy CLAY; low pl	LT; low plasticity; dark gre asticity; brown, grey; with	ey, brown.	- 1	и :₽4)	F RE	ESIDUAL SOIL	·
D/T	L-M	Encountered	_	<u>0.40</u> 185.60	4710/BH107/CBR0.3-0. CBR 0.30 m 4710/BH107/0.5/S/1 D 0.50 m	6/1		CL S	ronstone gravels. Sandy CLAY; low pl	asticity; red-brown.			N	St - VSt		
∢		Not	1	1.20 184.80	4740/01/407/4 2/0/4 0			CL- S	Gandy CLAY; low to		 rey, orange-brow	(< /n.	PL) F	- St		-
			-	1.50	1.30 m		+ + - 	CI	tole Terminated at	1 50 m			,	√St		
									Target depth reach	ed)						
			2—													-
			-													
			-													
_			3													-
2016-11-10			-													
ens 2.00 2			-													
3 Prj: Mart																
2016-11-1			4													-
tens 2.00			-													
Lib: Mar			-													
ool - DGD			-													
d In Situ To			5													-
jel Lab and			-													
.004 Datc			-													
5:29 8.3(-													
/08/2018			6													-
File>> 08																
<			-													
01.GPJ <			-													
1-BH102V																
7108H10																-
LE P1504			-													
30REHO.			-													
ARI ENS I			-													
B Log M.	1			E	EXCAVATION LOG TO) BE	REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES AN	ID A	BBRE	VIATIONS	
ARTENS 2.00 LIB.GL) Copyr	art (en: Associate	S s Pty. Ltd.			Suite mail@	MARTENS & 2 201, 20 George S Phone: (02) 9476 martens.com.au	ASSOCIATES PTY LTD 5t. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter) Australia 767 ns.com.au		E	Eng E	ineeriı BOREH	ng Log - IOLE
CLIE	ENT	Т	ony Ha	rris c/- (Calder Flower Architect	ts			COMMENCED	18/07/2018	COMPLETED	18/07/20)18	R	EF	BH108
--------	--	-------------	-------------------	----------------------------------	---	-----------	---	-------------------------------	--	---	--------------------	--	-------------	-----------------------------	-----------------------	-----------------------------------
PRC	DJEC	ТР	relimina	ary Geo	technical Assessment				LOGGED	АМ	CHECKED	KED HN Sheet 1 OF 1				
SITE	Ξ	5	2 Cooy	ong Rd	, Terrey Hills, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	Grass		Sh PR	ROJECT	1 OF 1 NO. P1504710
EQU	IIPME	NT			2WD ute-mounted hydrau	ulic dri	ill rig		EASTING		RL SURFACE	189.9 m		DA		AHD
EXC	AVAT		IMENSI	ONS	Ø100 mm x 4.80 m depth				NORTHING		ASPECT	West		SL	.OPE	<5%
		Dril	ling		Sampling	_			•	Fi	eld Material D	escriptio	on		I	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	RIPTION	MOISTURE	CONSISTENCY	TODSON	STRU(ADI OBSE	CTURE AND DITIONAL RVATIONS
			-	0.20	-		<u> </u>	1 SM	TOPSOIL: Silty SAN	ID; fine grained; brown; tr	ace clay.	D	MD			
	L M-H		- - 1—		4710/BH108/0.3-0.6/CB CBR 0.30 m 4710/BH108/0.4/S/1 D 0.40 m	R/1 ·			Sandy CLAY; low pl subrounded ironsto	asticity; red, white, orange ne gravels.	e-brown; trace	M (<pl< td=""><td>St - VSt</td><td>-</td><td>SUL</td><td></td></pl<>	St - VSt	-	SUL	
S			-	<u>1.10</u> 188.80			<u> </u>	SP	SAND; medium gra	ned; pale grey, pale yello	w, red; trace clay	;-+-	<u>н</u>	1.10: Possik	bly extre	mely weathered
4	н		-	<u>1.50</u> 188.40					Pale grey, pale red.	ny dense.		м	D - VD	Sanusione.		
		Encountered	2	2.10 187.80 2.40 187.50	4710/BH108/2.0/S/1 D 2.00 m				Pale grey, pale yello		rev dictinctly	_		WEATHER		<u>к</u>
	м-н	Not	-				· · · · ·		weathered; inferred	very low to low strength.	rey, districtly			2.40: V-bit r	efusal.	
			3—	<u>3.00</u> 186.90	-				Red-brown; inferred	low strength.						
AD/T	н		-	<u>3.60</u> 186.30					Red-brown, pale gre	≥y.						
			4 — - -				· ·									
			5	4.80					Hole Terminated at	4.80 m				4.80: TC-bit medium stre	t refusal ength sa	on inferred low to ndstone.
			-													
			- 7—													
			-													
(EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au															

15 Attachment E – Data Validation Report

Detailed Site Investigation: Proposed Seniors Living, 58 Laitoki Road, Terrey Hills, NSW. P1504710JR05V01 – October 2018 Page 36

1. Sample Handling

- a. Were sample holding times met?
- b. Were samples in proper custody between the field and reaching the laboratory?
- c. Were the samples properly and adequately preserved?
- d. Were the samples received by the laboratory in good condition?

Yes No (Comments below) ✓ ✓ ✓

COMMENTS

Sample handling is:

✓ Satisfactory

Partially Satisfactory

Unsatisfactory

2. Precision / Accuracy Statement

- a. Was a NATA registered laboratory used?
- b. Did the laboratory perform the requested tests?
- c. Were laboratory methods adopted NATA endorsed?
- d. Were appropriate test procedures followed?
- e. Were reporting limits satisfactory?
- f. Was the NATA Seal on the reports?
- g. Were reports signed by an authorised person?

COMMENTS

YesNo
(Comments
below)✓✓✓✓✓✓✓

Precision / Accuracy of the Laboratory Report:

Satisfactory

1

Partially Satisfactory

Unsatisfactory

3. Field Quality Assurance / Quality Control (QA/QC)

a. Ni (c	umber of Primary Samples analysed does not include duplicates)	Soil: Water: Material	12 - -
b. N	umber of days of sampling	1	
c. N	umber and Type of QA/QC Samples analysed	Soil	Water
	Intra-Laboratory Field Duplicates	2	
	Inter-Laboratory Field triplicates	-	
	Trip Blanks	1	
	Field Rinsate	-	
	Other (Field Blanks, Spikes, etc.)	_	
Comr	nents		

Media

Number

Field Duplicates

Adequate Numbers of intra-laboratory field duplicates analysed?

Adequate Numbers of inter-laboratory field duplicates analysed?

Were field duplicate RPDs within Control Limits?

- i. Organics
- ii. Metals / Inorganics
- iii. Nutrients

COMMENTS

Samples 4710/DUP01 and 4710/SS117 exceeded RPDs for lead (96%)

and zinc (49%). This is likely due to sampling of heterogenous material. All

sample concentrations are well below the adopted SAC and will not affect

investigation findings.

Summary of Quality Assurance / Quality Control (QA/QC)

QA/QC Type	Satisfactory	Partially Satisfactory	Unsatisfactory
Sample handling	√		
Precision / Accuracy of the Laboratory Report	✓		
Field QA / QC	✓		
Laboratory Internal QA / QC	✓		
Data Usability			
1. Data directly usable			\checkmark
2. Data usable with the (see comment below)	following correc)	ctions/modifications	
3. Data not usable.			
COMMENTS			

Field Dupl Filter: SDG	icates (SOI 6 in('ENVIR	L)	SDG Field ID Sampled Date/Time	ENVIROLAB 2018-07-13T00:00:00 4710/SS117 12/07/2018	ENVIROLAB 2018-07-13T00:00:00 4710/DUP01 12/07/2018	RPD	ENVIROLAB 2018-07-13T00:00:00 4710/SS120 12/07/2018	ENVIROLAB 2018-07-13T00:00:00 4710/DUP02 12/07/2018	RPD
Chem_Gro	ChemNam	Units	EQL						
Inorganics	Moisture	%	0.1	15.0	23.0	42	17.0	20.0	16
Lead	Lead	mg/kg	1	20.0	57.0	96	26.0	26.0	0
Metals	Arsenic	mg/kg	4	<4.0	4.0	0	<4.0	<4.0	0
	Cadmium	mg/kg	0.4	<0.4	<0.4	0	<0.4	<0.4	0
	Chromium	mg/kg	1	11.0	16.0	37	18.0	13.0	32
	Copper	mg/kg	1	32.0	25.0	25	10.0	9.0	11
	Mercury	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.1	0
	Nickel	mg/kg	1	8.0	10.0	22	4.0	4.0	0
	Zinc	mg/kg	1	53.0	87.0	49	36.0	41.0	13

 **PDs have only been considered where a concentration is greater than 1 times the EQL.

 **High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 80 (1-10 x EQL); 50 (10-30 x EQL); 30 (> 30 x EQL))

 ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

16 Attachment F – Laboratory Summary Tables

Detailed Site Investigation: Proposed Seniors Living, 58 Laitoki Road, Terrey Hills, NSW. P1504710JR05V01 – October 2018 Page 43

				BTEX										P/	H/Pher	nols											TF	ч				
	Benzene	Ethylbenzene	Toluene	Xylene (m & p)	Xylene (o)	Xylene Total	C6-C10 less BTEX (F1)	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Chrysene	Dibenz (a,h) anthrace ne	Carcinogenic PAHs (as B(a)P TPI	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	C10-C16	C16-C34	C34-C40	F2-NAPHTHALENE	co - co	C10 - C14	C15 - C28	c29-C36	C10 - C40 (Sum of total)	C6-C10
	mg/kg	mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
QL	0.2	1	0.5	2	1	1	25	0.1	0.1	0.1	0.1	0.05	0.1	0.1	0.1		0.1	0.1	0.1	0.1	0.1	0.1	50	100	100	50	25	50	100	100	50	25
EPM 2013 Table 1A(1) HILs Res A Soil																3																
EPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand																																
0-1m	0.5	55	160			40	45													3						110						
1-2m	0.5	NL	220			60	70													NL						240						
2-4m	0.5	NL	310			95	110													NL						440						
>4m	0.5	NL	540			170	200													NL						NL						
EPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil																																
0-2m	50	70	85			105	180					0.7												300	2800	120						
EPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil																							1000	2500	10000							700
ite Specific EIL																				170												
ield_ID	<0.2	~1	<0.5	0	<1	21	-25	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.172	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
710/8/101/0.2	<0.2	<1	<0.5	~2	<1	<1	~25	<0.1	<0.1	<0.1	0.2	0.03	0.1	0.2	<0.1	0.204	0.6	<0.1	0.1	<0.1	0.1	0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	~25
710/04102/0.5	<0.2	~1	-0.5	~2	~1	~1	~25	<0.1	-0.1	-0.1	-0.3	10.05	0.2	-0.1	<0.1	0.334	0.0	-0.1	- 0.1	<0.1	10.2	0.5	<00	<100	<100	~50	-25	~50	<100	<100	<50	~2.5
710/05101	<0.2	~1	10.5	2	~1	-1	-25	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	10.1	<0.1	<0.172	<0.1	<0.1	<0.1	<0.1	<0.1	10.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	×25
710/55101	<0.2	~1	-0.5	~2	~1	~1	-25	<0.1	-0.1	-0.1	<0.1	<0.00	<0.1	<0.1	-0.1	0.151	0.1	<0.1	<0.1	<0.1	<0.1	0.1	~50	<100	<100	~50	-25	<50	<100	<100	-50	~25
710/35105	<0.2	<1	<0.5	~2	<1	<1	<25	<0.1	<0.1	<0.1	0.1	0.09	0.1	0.2	<0.1	0.151	0.2	<0.1	0.1	<0.1	0.2	0.2	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
710/55100	<0.2	<1	<0.5	~2	<1	<1	<25	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.295	0.7	<0.1	<0.1	<0.1	<0.5	0.0	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
710/55103	<0.2	~1	-0.5	~2	~1	~1	~25	<0.1	-0.1	-0.1	-0.1	10.00	-0.1	-0.1	-0.1	0.121	0.1	-0.1	-0.1	-0.1	<0.1	10.1	<00	<100	<100	~50	-25	~50	<100	<100	<50	~2.5
710/35112	<0.2	<1	<0.5	~2	<1	<1	<25	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.172	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
710/55114	<0.2	~1	-0.5	~2	~1	~1	~25	<0.1	-0.1	-0.1	-0.1	<0.03	<0.1	-0.1	-0.1	0.141	0.1	<0.1	-0.1	<0.1	<0.1	0.1	~50	<100	<100	<50	-25	<50	<100	<100	<50	~2.5
710/55117	<0.2	<1	<0.5	~2	<1	<1	~25	<0.1	<0.1	<0.1	0.1	0.08	0.1	0.1	<0.1	0.141	0.1	<0.1	<0.1	<0.1	0.1	0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	~25
710/55117	<0.2	<1	<0.5	~2	<1	<1	<25	<0.1	<0.1	<0.1	<0.1	0.06	<0.1	<0.1	<0.1	0.107	0.2	<0.1	<0.1	<0.1	<0.1	0.2	<50	<100	<100	<50	<25	<50	<100	<100	<50	~2.5
tatistical Summary	NO.2	~ ~1	1 <0.5	~2	~1	~1	~2.5	1 50.1	50.1	~0.1	0.1	1 0.00	1 40.1	NO.1	1 40.1	0.121	0.2	1 40.1	1 40.1	1 40.1	NO.1	0.1		~100	1 <100	1 10	~25	<50	100	1001	-50	~25
umber of Results	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
umber of Detects	0	0	0	0	0	0	0	0	0	0	3	7	3	3	0	7	7	0	2	0	3	7	0	0	0	0	0	0	0	0	0	0
Inimum Concentration	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	<0.1	<0.1	< 0.1	< 0.05	<0.1	< 0.1	<0.1	0.121	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
linimum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	0.06	0.1	0.1	ND	0.121	0.1	ND	0.1	ND	0.1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
laximum Concentration	<0.2	<1	< 0.5	<2	<1	<1	<25	<0.1	<0.1	<0.1	0.3	0.3	0.2	0.3	<0.1	0.394	0.7	< 0.1	0.1	< 0.1	0.3	0.6	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
laximum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.3	0.3	0.2	0.3	ND	0.394	0.7	ND	0.1	ND	0.3	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
verage Concentration	0.1	0.5	0.25	1	0.5	0.5	13	0.05	0.05	0.05	0.096	0.085	0.079	0.088	0.05	0.15	0.2	0.05	0.058	0.05	0.088	0.17	25	50	50	25	13	25	50	50	25	13
Iedian Concentration	0.1	0.5	0.25	1	0.5	0.5	12.5	0.05	0.05	0.05	0.05	0.06	0.05	0.05	0.05	0.121	0.1	0.05	0.05	0.05	0.05	0.1	25	50	50	25	12.5	25	50	50	25	12.5
tandard Deviation	0	0	0	0	0	0	0	0	0	0	0.096	0.085	0.058	0.08	0	0.097	0.22	0	0.019	0	0.08	0.19	0	0	0	0	0	0	0	0	0	0
umber of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
umber of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Inorganics	Lead				Metals			Polychlorinated Biphenyls								
onsulting engineers	Moisture	Lead	Arsenic	Cadmium	Chromium (III+VI)	Copper	Mercury	Nickel	Zinc	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Sum of total)
	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	1	4	0.4	1	1	0.1	1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table 1A(1) HILs Res A Soil		300	100	20	İ	6000	40	400	7400			İ	İ				1
Site Specific EIL		1100	100			55		35	150								
Field_ID	0.2	22	- 11	-0.4	40		-0.1	2	22	-0.1	-0.1	-0.1					
4710/BH101/0.5	8.2	23	<4	<0.4	48	4	<0.1	3	32	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4710/BH102/0.3	14	29	<4	<0.4	18	- 11	<0.1	/	44	-	-	-	-	-	-	-	-
4710/BH102/1.4	10	24	<4	<0.4	20	5	<0.1	2	19					-			-0.1
4710/55101	12	14	6	<0.4	39	4	<0.1	2	20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4710/55105	10	18	<4	<0.4	7	5	<0.1	2	31	-	-	-	-	-	-		
4710/55100	15	22	<4	<0.4	12	10	<0.1	5	50		-	-	-	-	-		
4710/55109	15	15	<4	<0.4	15	10	<0.1	5	26		-	-	-	-	-		
4710/55112	10	15	<4	<0.4	7	7	<0.1	4	20	<u> </u>	-	-	-	-			<u> </u>
4710/55114	26	22	<4	<0.4		13	<0.1	5	51		-			-	-		
4710/55115	15	20	<4	<0.4	11	32	<0.1	8	53		-			-	-		
4710/55117	17	26	<4	<0.4	18	10	<0.1	1	36								<u> </u>
4710/35120	1/	20	N 4	<0.4	10	10	10.1	4	50	-	-	-	-	-	_		
Statistical Summary																	
Number of Results	12	12	12	12	12	12	12	12	12	2	2	2	2	2	2	2	2
Number of Detects	12	12	1	0	12	12	0	12	12	0	0	0	0	0	0	0	0
Minimum Concentration	8.2	9	<4	<0.4	7	4	<0.1	2	19	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Minimum Detect	8.2	9	6	ND	7	4	ND	2	19	ND							
Maximum Concentration	26	32	6	<0.4	48	32	<0.1	8	53	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Detect	26	32	6	ND	48	32	ND	8	53	ND							
Average Concentration	15	22	2.3	0.2	16	9.8	0.05	4	37								
Median Concentration	15	22.5	2	0.2	11	8	0.05	3.5	36	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Standard Deviation	4.4	7.1	1.2	0	13	7.5	0	2	11								
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Halogenated Benzenes			Organochlorine Pesticides Pesticides Pesticides Pesticides																													
	Hexachlorobenzene	4,4-DDE	a-BHC	Aldrin	ь-внс	Chlordane (cis)	Chlordane (trans)	d-BHC	000	DDT	DDT+DDE+DDD	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Methoxychlor	Azinophos methyl	Bromophos-ethyl	Chlorpyrifos	Chlorpyrifos-methy l	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Malathion	Romel	Parathion
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table 1A(1) HILs Res A Soil	10										240					10			6		300			160									
Site Specific EIL										180																							
Field ID										1	1	1	1										1		1		1	1		1			
4/10/BH101/0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
4/10/BH102/0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4710/BH102/1.4	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4710/SS101	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4710/SS105	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4710/SS106	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4710/SS109	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1
4710/55112	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1
4710/SS114	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1
4710/SS115	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1
4710/SS117	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1
4710/SS120	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1
Statistical Summary						1	1	1.15		1.15	1.15	1.12	1.15											1.15	1.12		1	1.15		1.15			
Number of Results	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Minimum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Concentration	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Median Concentration	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Standard Deviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

17 Attachment G – Laboratory Analytical Documentation

Detailed Site Investigation: Proposed Seniors Living, 58 Laitoki Road, Terrey Hills, NSW. P1504710JR05V01 – October 2018 Page 53

CERTIFICATE OF ANALYSIS 196235

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Robert Mehaffey, Gray Taylor
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1504710JCOC01V01
Number of Samples	30 soil, 2 material
Date samples received	13/07/2018
Date completed instructions received	13/07/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report DetailsDate results requested by20/07/2018Date of Issue19/07/2018NATA Accreditation Number 2901. This document shall not be reproduced except in full.Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Matt Tang Authorised by Asbestos Approved Signatory: Matt Tang **Results Approved By** Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager

Giovanni Agosti, Group Technical Manager Matthew Tang, Asbsestos Analyst Nancy Zhang, Assistant Lab Manager Steven Luong, Senior Chemist

Authorised By

Jacinta Hurst, Laboratory Manager

VTRH(C6-C10)/BTEXN in Soil Our Reference		196235-1	196235-5	196235-6	196235-9	196235-12
Your Reference	UNITS	4710/SS101	4710/SS105	4710/SS106	4710/SS109	4710/SS112
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	18/07/2018	18/07/2018	18/07/2018	18/07/2018	18/07/2018
TRH $C_6 - C_9$	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xvlene	mg/kg	<2	<2	<2	<2	<2
o-Xvlene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xvlenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	99	93	96	97	93
vTRH(C6-C10)/BTEXN in Soil		196235-14	196235-15	106235-17	196235-20	106235-21
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	LINITS	196235-14	196235-15	196235-17	196235-20	196235-21
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	196235-14 4710/SS114	196235-15 4710/SS115	196235-17 4710/SS117	196235-20 4710/SS120	196235-21 4710/BH101/0.5
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Date Sampled	UNITS	196235-14 4710/SS114 12/07/2018	196235-15 4710/SS115 12/07/2018	196235-17 4710/SS117 12/07/2018	196235-20 4710/SS120 12/07/2018	196235-21 4710/BH101/0.5 12/07/2018
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Date Sampled Type of sample	UNITS	196235-14 4710/SS114 12/07/2018 soil	196235-15 4710/SS115 12/07/2018 soil	196235-17 4710/SS117 12/07/2018 soil	196235-20 4710/SS120 12/07/2018 soil	196235-21 4710/BH101/0.5 12/07/2018 soil
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Date Sampled Type of sample Date extracted	UNITS	196235-14 4710/SS114 12/07/2018 soil 16/07/2018	196235-15 4710/SS115 12/07/2018 soil 16/07/2018	196235-17 4710/SS117 12/07/2018 soil 16/07/2018	196235-20 4710/SS120 12/07/2018 soil 16/07/2018	196235-21 4710/BH101/0.5 12/07/2018 soil 16/07/2018
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed	UNITS - -	196235-14 4710/SS114 12/07/2018 soil 16/07/2018 18/07/2018	196235-15 4710/SS115 12/07/2018 soil 16/07/2018 18/07/2018	196235-17 4710/SS117 12/07/2018 soil 16/07/2018 18/07/2018	196235-20 4710/SS120 12/07/2018 soil 16/07/2018 18/07/2018	196235-21 4710/BH101/0.5 12/07/2018 soil 16/07/2018 18/07/2018
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	UNITS - - mg/kg	196235-14 4710/SS114 12/07/2018 soil 16/07/2018 18/07/2018 <25	196235-15 4710/SS115 12/07/2018 soil 16/07/2018 18/07/2018 <25	196235-17 4710/SS117 12/07/2018 soil 16/07/2018 18/07/2018 <25	196235-20 4710/SS120 12/07/2018 soil 16/07/2018 18/07/2018 <25	196235-21 4710/BH101/0.5 12/07/2018 soil 16/07/2018 18/07/2018 <25
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$	UNITS - mg/kg mg/kg	196235-14 4710/SS114 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25	196235-15 4710/SS115 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25	196235-17 4710/SS117 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25	196235-20 4710/SS120 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25	196235-21 4710/BH101/0.5 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1)	UNITS - - mg/kg mg/kg mg/kg	196235-14 4710/SS114 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25	196235-15 4710/SS115 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25	196235-17 4710/SS117 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25	196235-20 4710/SS120 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25	196235-21 4710/BH101/0.5 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)Benzene	UNITS - - mg/kg mg/kg mg/kg mg/kg	196235-14 4710/SS114 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2	196235-15 4710/SS115 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2	196235-17 4710/SS117 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2	196235-20 4710/SS120 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2	196235-21 4710/BH101/0.5 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg	196235-14 4710/SS114 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2 <0.2	196235-15 4710/SS115 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2 <0.2	196235-17 4710/SS117 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2 <0.2	196235-20 4710/SS120 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2 <0.2	196235-21 4710/BH101/0.5 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2 <0.2
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	196235-14 4710/SS114 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	196235-15 4710/SS115 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	196235-17 4710/SS117 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	196235-20 4710/SS120 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	196235-21 4710/BH101/0.5 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	196235-14 4710/SS114 12/07/2018 soil 16/07/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	196235-15 4710/SS115 12/07/2018 soil 16/07/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	196235-17 4710/SS117 12/07/2018 soil 16/07/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	196235-20 4710/SS120 12/07/2018 soil 16/07/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	196235-21 4710/BH101/0.5 12/07/2018 soil 16/07/2018 (25 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.2 <1 <1 <2
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	196235-14 4710/SS114 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	196235-15 4710/SS115 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	196235-17 4710/SS117 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	196235-20 4710/SS120 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2	196235-21 4710/BH101/0.5 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <0.2 <0.2 <0.2 <0.2 <0.2 <1 <2 <1 <2 <1 <1
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylenenaphthalene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	196235-14 4710/SS114 12/07/2018 soil 16/07/2018 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1	196235-15 4710/SS115 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <1	196235-17 4710/SS117 12/07/2018 soil 16/07/2018 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1	196235-20 4710/SS120 12/07/2018 soil 16/07/2018 (25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1	196235-21 4710/BH101/0.5 12/07/2018 soil 16/07/2018 (25 (25) (25) (25) (25) (25) (25) (25)
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-XylenenaphthaleneTotal +ve Xylenes	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	196235-14 4710/SS114 12/07/2018 soil 16/07/2018 (25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <1 <1 <1	196235-15 4710/SS115 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <1 <1 <1	196235-17 4710/SS117 12/07/2018 soil 16/07/2018 18/07/2018 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <1 <1 <1	196235-20 4710/SS120 12/07/2018 soil 16/07/2018 (25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <1 <1 <1	196235-21 4710/BH101/0.5 12/07/2018 soil 16/07/2018 (25 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.2 <0.2 <1 <2 <1 <1 <1 <1 <1

vTRH(C6-C10)/BTEXN in Soil					
Our Reference		196235-23	196235-25	196235-31	196235-32
Your Reference	UNITS	4710/BH102/0.3	4710/BH102/1.4	Trip Spike	Trip Blank
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil
Date extracted	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	18/07/2018	18/07/2018	18/07/2018	18/07/2018
TRH C6 - C9	mg/kg	<25	<25	[NA]	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	[NA]	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	[NA]	<25
Benzene	mg/kg	<0.2	<0.2	97%	<0.2
Toluene	mg/kg	<0.5	<0.5	98%	<0.5
Ethylbenzene	mg/kg	<1	<1	100%	<1
m+p-xylene	mg/kg	<2	<2	100%	<2
o-Xylene	mg/kg	<1	<1	100%	<1
naphthalene	mg/kg	<1	<1	[NA]	<1
Total +ve Xylenes	mg/kg	<1	<1	[NA]	<1
Surrogate aaa-Trifluorotoluene	%	97	93	79	96

svTRH (C10-C40) in Soil						
Our Reference		196235-1	196235-5	196235-6	196235-9	196235-12
Your Reference	UNITS	4710/SS101	4710/SS105	4710/SS106	4710/SS109	4710/SS112
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	17/07/2018	17/07/2018	16/07/2018	17/07/2018	17/07/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	107	94	97	97	96

svTRH (C10-C40) in Soil						
Our Reference		196235-14	196235-15	196235-17	196235-20	196235-21
Your Reference	UNITS	4710/SS114	4710/SS115	4710/SS117	4710/SS120	4710/BH101/0.5
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	99	103	98	99	97

svTRH (C10-C40) in Soil			
Our Reference		196235-23	196235-25
Your Reference	UNITS	4710/BH102/0.3	4710/BH102/1.4
Date Sampled		12/07/2018	12/07/2018
Type of sample		soil	soil
Date extracted	-	16/07/2018	16/07/2018
Date analysed	-	17/07/2018	17/07/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50
TRH >C16 -C34	mg/kg	<100	<100
TRH >C34 -C40	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	96	95

PAHs in Soil						
Our Reference		196235-1	196235-5	196235-6	196235-9	196235-12
Your Reference	UNITS	4710/SS101	4710/SS105	4710/SS106	4710/SS109	4710/SS112
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.2	0.7	0.1	<0.1
Pyrene	mg/kg	<0.1	0.2	0.6	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.5	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.09	0.2	0.06	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.4	3.3	0.3	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	97	78	97	92

PAHs in Soil						
Our Reference		196235-14	196235-15	196235-17	196235-20	196235-21
Your Reference	UNITS	4710/SS114	4710/SS115	4710/SS117	4710/SS120	4710/BH101/0.5
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	0.2	0.2	<0.1
Pyrene	mg/kg	<0.1	0.1	0.2	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.08	0.1	0.06	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.3	1.2	0.4	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	95	99	97	96	95

PAHs in Soil			
Our Reference		196235-23	196235-25
Your Reference	UNITS	4710/BH102/0.3	4710/BH102/1.4
Date Sampled		12/07/2018	12/07/2018
Type of sample		soil	soil
Date extracted	-	16/07/2018	16/07/2018
Date analysed	-	17/07/2018	17/07/2018
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	0.2	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	0.6	<0.1
Pyrene	mg/kg	0.5	<0.1
Benzo(a)anthracene	mg/kg	0.3	<0.1
Chrysene	mg/kg	0.2	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.4	<0.2
Benzo(a)pyrene	mg/kg	0.3	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2	<0.1
Total +ve PAH's	mg/kg	2.7	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	95	94

Organochlorine Pesticides in soil						
Our Reference		196235-1	196235-5	196235-6	196235-9	196235-12
Your Reference	UNITS	4710/SS101	4710/SS105	4710/SS106	4710/SS109	4710/SS112
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	125	123	127	132	122

Organochlorine Pesticides in soil						
Our Reference		196235-14	196235-15	196235-17	196235-20	196235-21
Your Reference	UNITS	4710/SS114	4710/SS115	4710/SS117	4710/SS120	4710/BH101/0.5
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	118	127	127	125	119

Organochlorine Pesticides in soil			
Our Reference		196235-23	196235-25
Your Reference	UNITS	4710/BH102/0.3	4710/BH102/1.4
Date Sampled		12/07/2018	12/07/2018
Type of sample		soil	soil
Date extracted	-	16/07/2018	16/07/2018
Date analysed	-	16/07/2018	16/07/2018
НСВ	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	120	119

Organophosphorus Pesticides						
Our Reference		196235-1	196235-5	196235-6	196235-9	196235-12
Your Reference	UNITS	4710/SS101	4710/SS105	4710/SS106	4710/SS109	4710/SS112
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	125	123	127	132	122

Organophosphorus Pesticides						
Our Reference		196235-14	196235-15	196235-17	196235-20	196235-21
Your Reference	UNITS	4710/SS114	4710/SS115	4710/SS117	4710/SS120	4710/BH101/0.5
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	118	127	127	125	119

Organophosphorus Pesticides			
Our Reference		196235-23	196235-25
Your Reference	UNITS	4710/BH102/0.3	4710/BH102/1.4
Date Sampled		12/07/2018	12/07/2018
Type of sample		soil	soil
Date extracted	-	16/07/2018	16/07/2018
Date analysed	-	16/07/2018	16/07/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Surrogate TCMX	%	120	119

PCBs in Soil			
Our Reference		196235-1	196235-21
Your Reference	UNITS	4710/SS101	4710/BH101/0.5
Date Sampled		12/07/2018	12/07/2018
Type of sample		soil	soil
Date extracted	-	16/07/2018	16/07/2018
Date analysed	-	16/07/2018	16/07/2018
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCLMX	%	125	119

Acid Extractable metals in soil						
Our Reference		196235-1	196235-5	196235-6	196235-9	196235-12
Your Reference	UNITS	4710/SS101	4710/SS105	4710/SS106	4710/SS109	4710/SS112
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Arsenic	mg/kg	6	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	39	7	7	13	7
Copper	mg/kg	4	6	7	10	9
Lead	mg/kg	14	18	31	32	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	2	3	5	4
Zinc	mg/kg	26	31	38	52	36

Acid Extractable metals in soil						
Our Reference		196235-14	196235-15	196235-17	196235-20	196235-21
Your Reference	UNITS	4710/SS114	4710/SS115	4710/SS117	4710/SS120	4710/BH101/0.5
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	9	11	18	48
Copper	mg/kg	7	13	32	10	4
Lead	mg/kg	9	22	20	26	23
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	5	8	4	3
Zinc	mg/kg	28	51	53	36	32

Acid Extractable metals in soil					
Our Reference		196235-23	196235-25	196235-27	196235-28
Your Reference	UNITS	4710/BH102/0.3	4710/BH102/1.4	4710/DUP01	4710/DUP02
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil
Date prepared	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Arsenic	mg/kg	<4	<4	4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	18	11	16	13
Copper	mg/kg	11	5	25	9
Lead	mg/kg	29	24	57	26
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	7	2	10	4
Zinc	mg/kg	44	19	87	41

Moisture						
Our Reference		196235-1	196235-5	196235-6	196235-9	196235-12
Your Reference	UNITS	4710/SS101	4710/SS105	4710/SS106	4710/SS109	4710/SS112
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018
Moisture	%	12	16	15	15	15
Moisture						
Our Reference		196235-14	196235-15	196235-17	196235-20	196235-21
Your Reference	UNITS	4710/SS114	4710/SS115 4710/SS117		4710/SS120	4710/BH101/0.5
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	12/07/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	16/07/2018
Date analysed	-	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018
Moisture	%	18	26	15	17	8.2
Moisture						
Our Reference		196235-23	196235-25	196235-27	196235-28	
Your Reference	UNITS	4710/BH102/0.3	4710/BH102/1.4	4710/DUP01	4710/DUP02	
Date Sampled		12/07/2018	12/07/2018	12/07/2018	12/07/2018	
Type of sample		soil	soil	soil	soil	
Date prepared	-	16/07/2018	16/07/2018	16/07/2018	16/07/2018	
Date analysed	-	17/07/2018	17/07/2018	17/07/2018	17/07/2018	
Moisture	%	14	10	23	20	

Asbestos ID - soils			
Our Reference		196235-1	196235-21
Your Reference	UNITS	4710/SS101	4710/BH101/0.5
Date Sampled		12/07/2018	12/07/2018
Type of sample		soil	soil
Date analysed	-	19/07/2018	19/07/2018
Sample mass tested	g	Approx. 30g	41.41g
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	Chrysotile asbestos detected Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected

Asbestos ID - materials			
Our Reference		196235-29	196235-30
Your Reference	UNITS	4710/PACM01	4710/PACM02
Date Sampled		12/07/2018	12/07/2018
Type of sample		material	material
Date analysed	-	17/07/2018	17/07/2018
Mass / Dimension of Sample	-	75x50x5mm	45x15x5mm
Sample Description	-	Beige compressed fibre cement material	Beige compressed fibre cement material
Asbestos ID in materials	-	Chrysotile asbestos detected	Chrysotile asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.

Method ID	Methodology Summary
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note the Total +ve PAHs PQI is reflective of the lowest individual PQI and is therefore "Total +ve PAHs" is simply a sum of </pql></pql></pql>
	the positive individual PAHs.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	196235-21
Date extracted	-			16/07/2018	1	16/07/2018	16/07/2018		16/07/2018	16/07/2018
Date analysed	-			18/07/2018	1	18/07/2018	18/07/2018		18/07/2018	18/07/2018
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	84	80
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	84	80
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	81	79
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	80	78
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	79	75
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	89	85
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	80	76
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	102	1	99	100	1	96	95

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	25	16/07/2018	16/07/2018		[NT]	[NT]
Date analysed	-			[NT]	25	18/07/2018	18/07/2018		[NT]	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	25	<25	<25	0	[NT]	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	25	<25	<25	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-016	[NT]	25	<0.2	<0.2	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-016	[NT]	25	<0.5	<0.5	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-016	[NT]	25	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-016	[NT]	25	<2	<2	0	[NT]	[NT]
o-Xylene	mg/kg	1	Org-016	[NT]	25	<1	<1	0	[NT]	[NT]
naphthalene	mg/kg	1	Org-014	[NT]	25	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	25	93	100	7	[NT]	[NT]

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	196235-21	
Date extracted	-			16/07/2018	1	16/07/2018	16/07/2018		16/07/2018	16/07/2018	
Date analysed	-			16/07/2018	1	17/07/2018	17/07/2018		16/07/2018	17/07/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	114	120	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	96	105	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	92	85	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	114	120	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	96	105	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	92	85	
Surrogate o-Terphenyl	%		Org-003	93	1	107	94	13	100	97	

QUALITY CO	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	25	16/07/2018	16/07/2018		[NT]	[NT]
Date analysed	-			[NT]	25	17/07/2018	17/07/2018		[NT]	[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	25	<50	<50	0	[NT]	[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	25	<100	<100	0	[NT]	[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	25	<100	<100	0	[NT]	[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	25	<50	<50	0	[NT]	[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	25	<100	<100	0	[NT]	[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	25	<100	<100	0	[NT]	[NT]
Surrogate o-Terphenyl	%		Org-003	[NT]	25	95	91	4	[NT]	[NT]
QUALIT	Y CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
---------------------------	----------	---------	---------	------------	---	------------	------------	-----	------------	------------
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	196235-21
Date extracted	-			16/07/2018	1	16/07/2018	16/07/2018		16/07/2018	16/07/2018
Date analysed	-			17/07/2018	1	17/07/2018	17/07/2018		17/07/2018	17/07/2018
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	111	98
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	116	93
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	105	96
Anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	108	101
Pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	110	104
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	102	95
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	<0.05	<0.05	0	97	84
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	103	1	99	94	5	120	121

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	25	16/07/2018	16/07/2018		[NT]	[NT]
Date analysed	-			[NT]	25	17/07/2018	17/07/2018		[NT]	[NT]
Naphthalene	mg/kg	0.1	Org-012	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Acenaphthylene	mg/kg	0.1	Org-012	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Phenanthrene	mg/kg	0.1	Org-012	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Anthracene	mg/kg	0.1	Org-012	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Pyrene	mg/kg	0.1	Org-012	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	[NT]	25	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	[NT]	25	<0.05	<0.05	0	[NT]	[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	[NT]	25	94	89	5	[NT]	[NT]

QUALITY CONTR	ROL: Organo	chlorine l	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	196235-21
Date extracted	-			16/07/2018	1	16/07/2018	16/07/2018		16/07/2018	16/07/2018
Date analysed	-			16/07/2018	1	16/07/2018	16/07/2018		16/07/2018	16/07/2018
НСВ	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	89	94
gamma-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	73	76
Heptachlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	88	90
delta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	87	92
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	83	90
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	91	95
Dieldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	94	98
Endrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	84	89
pp-DDD	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	90	95
Endosulfan II	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	79	78
Methoxychlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-005	118	1	125	116	7	107	103

QUALITY CONTR	ROL: Organo	chlorine l	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				25	16/07/2018	16/07/2018		[NT]	[NT]
Date analysed	-				25	16/07/2018	16/07/2018		[NT]	[NT]
НСВ	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
gamma-BHC	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
delta-BHC	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
gamma-Chlordane	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
Dieldrin	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
Endrin	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
Endosulfan II	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
Methoxychlor	mg/kg	0.1	Org-005		25	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-005	[NT]	25	119	115	3	[NT]	[NT]

QUALITY CONT	ROL: Organ	ophosph	orus Pesticides			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	196235-21
Date extracted	-			16/07/2018	1	16/07/2018	16/07/2018		16/07/2018	16/07/2018
Date analysed	-			16/07/2018	1	16/07/2018	16/07/2018		16/07/2018	16/07/2018
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	87	82
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	85	88
Dimethoate	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	91	98
Fenitrothion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	81	79
Malathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	83	71
Parathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	94	84
Ronnel	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	91	75
Surrogate TCMX	%		Org-008	118	1	125	116	7	126	117

QUALITY CONT	ROL: Organ	ophospho	orus Pesticides			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	25	16/07/2018	16/07/2018		[NT]	[NT]
Date analysed	-			[NT]	25	16/07/2018	16/07/2018		[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-008	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos	mg/kg	0.1	Org-008	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-008	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Dichlorvos	mg/kg	0.1	Org-008	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-008	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-008	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Fenitrothion	mg/kg	0.1	Org-008	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Malathion	mg/kg	0.1	Org-008	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-008	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-008	[NT]	25	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-008	[NT]	25	119	115	3	[NT]	[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	196235-21
Date extracted	-			16/07/2018	1	16/07/2018	16/07/2018		16/07/2018	16/07/2018
Date analysed	-			16/07/2018	1	16/07/2018	16/07/2018		16/07/2018	16/07/2018
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	102	100
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCLMX	%		Org-006	118	1	125	116	7	126	117

QUALITY CONT	NTROL: Acid Extractable metals in soil					Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	196235-21
Date prepared	-			16/07/2018	1	16/07/2018	16/07/2018		16/07/2018	16/07/2018
Date analysed	-			16/07/2018	1	16/07/2018	16/07/2018		16/07/2018	16/07/2018
Arsenic	mg/kg	4	Metals-020	<4	1	6	<4	40	118	57
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	110	91
Chromium	mg/kg	1	Metals-020	<1	1	39	30	26	114	103
Copper	mg/kg	1	Metals-020	<1	1	4	6	40	119	111
Lead	mg/kg	1	Metals-020	<1	1	14	13	7	113	104
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	106	100
Nickel	mg/kg	1	Metals-020	<1	1	2	2	0	117	96
Zinc	mg/kg	1	Metals-020	<1	1	26	32	21	110	97

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	25	16/07/2018	16/07/2018		[NT]	
Date analysed	-			[NT]	25	16/07/2018	16/07/2018		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	25	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	25	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	25	11	10	10	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	25	5	6	18	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	25	24	26	8	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	25	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	25	2	1	67	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	25	19	25	27	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	I Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Nater Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Acid Extractable Metals in Soil - Spike recovery for As in sample 21 at 57% which is outside lab acceptance criteria (70-130%), however, the LCS recovery is acceptable at 118%, sample heterogeneity suspected

Asbestos: A portion of the supplied samples were sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that these sub-samples are indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples 196235-1 & 21 were sub-sampled from jars provided by the client.

Sample 196235-21; Chrysotile asbestos identified embedded in fragments of fibre cement, it is estimated to be 19.68g/kg in 41.41g of soil (i.e. > reporting limit for the method of 0.1g/kg). detected.

٠.

 $\nabla \mathcal{T}_{i}$

.

			**			Ac	ditional	Testing	9						_
Name	P150471	0 - 52 C	Cooyong I	Rd, Terr	ey Hills - D	SI	_			_					
Martens Contact Officer	Robert A	/ehaffe	еу						Contact	Email	rmehaffey@mc	ortens.com.au			
	Šample	Date	1	2 July 2	2018		Dispatch	Date	13 July 20	018	Turnaround Time		standard		
Sampling and Shipping	Our Refe	r Reference P1504710JCOC01V01							Šhipping (X)	Method	Hand	e Poi	st	Courier	x
	On Ice (X)				No Ice (X)			Other ((X)						
							Labora	огу							
Name	EnviroL	ab													
Sample Delivery Address	12 Ashle	ey Stre	et, Chat	swood	ł										
Delivery Contact	Name	Name Aileen Phone 9910 6200									Email	ahie@enviro	abservi	ces.com.au	,
Please Send Report By (X)	Post	Post Fax Email X Reporting Email Address rmehaffey@martens.com.au; gtaylor@martens.com.au													

	Sample ID	Combo 6a	Combo 5b	внм	Asbestos in Material	BTEX	TRH	HOID
1	4710/SS101	x						
2	4710/\$\$102							X
3	4710/\$\$103							<u> </u>
4	4710/\$\$104							<u> </u>
5	4710/\$\$105		X					
6	4710/\$\$106		X					
	4710/SS107							<u>×</u>
- a	4710/\$\$108							X
- 3	4710/SS109		x					
10	4710/SS110							X
	4710/SS111							X
17	4710/SS112		X					
13	4710/SS113							<u>×</u>
14	4710/SS114		X					·
15	4710/SS115		X					
16	4710/SS116							X
17	4710/SS117		<u> </u>					
- B	4710/SS118					·	<u> </u>	<u>X</u>
19	4710/SS119					· · · · · · · · · · · · · · · · · · ·	<u> </u>	X

Head Office

Suite 201, Level 2, 20 George Street Hornsby NSW 2077, Australia Ph 02 9476 9999 Fax 02 9476 8767 > mail@martens.com.au #196235. > www.martens.com.au MARTENS & ASSOCIATES P/L ABN 85 070 240 890 ACN 070 240 890

SOIL ANALYSIS CHAIN OF CUSTODY

.

-- -- 🦿

Page of

	Sample ID	Combo 6a	Combo 5b	8HM	Asbestos in Material	BTEX	TRH	HOLD
20	4710/SS120		X					
				· ·				
2	4710/BH101/0.5	X						·
22	4710/BH101/1.0						·	<u> </u>
23	4710/8H102/0.3		X					
24	4710/BH102/1.1							X
25	4710/BH102/1.4		x					
26	4710/BH102/2.6							X
-	·							
21	4710/DUP01			<u>x</u>		<u> </u>		
28	4710/DUP02			X				
27	4710/PACM01				<u>x</u>			
30	4710/PACM02				<u> </u>			
-								
31	Trîp Spike					<u>X</u>		
32	Trip Blank						<u> </u>	_ <u> </u>

Envirolab Services 12 Ashley St Chatswood NSW 2067 Ph: (02) 9910 6200

Job No: 196235.

Date Received: [357]9 Time Received: [2465. Received By: EM Temp: CoolAmbient Cooling: 100/cepack Security: Intact/Broken/Tope

.